講義科目名称: プログラミング応用 20-18-30 科目コード:20860

英文科目名称: Applications programming techniques

開講期間	配当年	単位数	科目必選区分		
2年前期	2	1	MESA:選択		
担当教員					
本良 瑞樹、佐藤 彰、崔 琥					
添付ファイル					

 近年はマイコンを用いた機器制御や1の「システムの構築をはじめ、Webアブリケーションの開発、工業製品開 過程でのシミュレーションをと、非常に多岐にわたっている。を1日にいられる言語・ツールについても、陰野をはじめ、Java、JavaScript、Python、さらには高度なシミュレーション機能を有するMATLAB/Simulink/ど、多岐にわたる、本講義では、様々な分野(機械、電気電子、物度・建築、情報などを含む)における研開発の一連の流れの中で、特にプログラミングによる課題解決を想定し、そこで用いられる最新の技術を取上げ、それを活用する手法を習得する。 1回 開業課期および講義の位置づけ 2回 開発環境の構築方法 3-5回 プログラミング活用に向けた基礎技術 AL①×3回、AL②×3回 は						
開講説明および講義の位置づけ 2回	近年はマイニ 過程でのシミ 語をはじめ, ど, 多岐にな 開発の一連の	プログラミングが必要とされる場面は、得られたデータの円滑な整理・活用に向けた分析はもちろんのこと、 近年はマイコンを用いた機器制御やIoTシステムの構築をはじめ、Webアプリケーションの開発、工業製品開発 過程でのシミュレーションなど、非常に多岐にわたっている.さらに用いられる言語・ツールについても、C言語をはじめ、Java、JavaScript、Python、さらには高度なシミュレーション機能を有するMATLAB/Simulinkなど、多岐にわたる.本講義では、様々な分野(機械、電気電子、物質、建築、情報などを含む)における研究開発の一連の流れの中で、特にプログラミングによる課題解決を想定し、そこで用いられる最新の技術を取り上げ、それを活用する手法を習得する.				
開発環境の構築方法 3-5回	1回					
プログラミング活用に向けた基礎技術 AL①×3回」 準備: 基礎的例題についてプログラミングを行い動作確認を行っておく 課題: データ解析手法の基本操作 6-11回 プログラミング技術活用に向けた応用技術 AL③×6回、AL④×6回 準備: 応用問題についてプログラミングを行い、動作確認を行っておく 課題: データ解析・表示プログラムの応用開発 12-14回 課題解決型実習 AL⑤×1回, AL⑥×2回 準備: グループ間で課題解決方法を議論し、実装に向けた計画を策定する 課題: 開発状況・成果について、報告書を作成する 15回 総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む・アクティブラーニング・①3回、②3回、③6回、④6回、⑤1回、⑥2回 達成目標 a) 適切なプログラム開発環境を構築できる(基礎) 。) データを読み込み、第三者が理解できる形で表示できる(基礎) 。) データを読み込み、第三者が理解できる形で表示できる(基礎) 。) データを読み込み、第三者が理解できる形で表示できる(基礎) 。) データを読み込み、第三者が理解できる形で表示できる(基礎) 。) データを活用できるようにディジタル信号処理を実行できる(応用) ・ 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) f) シミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用) 野価方法・フィー 各講義においてレポートを提出する.	2回					
AL①×3回 準備: 基礎的例題についてプログラミングを行い動作確認を行っておく 課題: データ解析手法の基本操作 6-11回	3-5回	3-5回				
プログラミング技術活用に向けた応用技術 AL③×6回、AL④×6回 準備:応用問題についてプログラミングを行い、動作確認を行っておく 課題:データ解析・表示プログラムの応用開発 12-14回 課題解決型実習 AL⑤×1回、AL⑥×2回 準備:グループ間で課題解決方法を議論し、実装に向けた計画を策定する 課題:開発状況・成果について、報告書を作成する 15回 総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む ・アクティブラーニング: ①3回、②6回、④6回、⑤1回、⑥2回 達成目標 a) 適切なプログラム開発環境を構築できる(基礎) b) 対象データを読み込み、第三者が理解できる形で表示できる(基礎) c) データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) 評価方法・フィー 各講義においてレポートを提出する.		AL①×3回,AL②×3回 準備:基礎的例題についてプログラミングを行い動作確認を行っておく 課題:データ解析手法の基本操作				
AL③×6回、AL④×6回 準備:応用問題についてプログラミングを行い、動作確認を行っておく 課題:データ解析・表示プログラムの応用開発 12-14回 課題解決型実習 AL⑤×1回、AL⑥×2回 準備:グループ間で課題解決方法を議論し、実装に向けた計画を策定する 課題:開発状況・成果について、報告書を作成する 15回 総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む ・アクティブラーニング: ①3回、②3回、③6回、④6回、⑤1回、⑥2回 達成目標 a)適切なプログラム開発環境を構築できる(基礎) b)対象データを読み込み、第三者が理解できる形で表示できる(基礎) c)データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d)データを活用できるようにディジタル信号処理を行い、現象を客観的に示すことできる(応用) e)数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) がシミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用)	6-11回					
課題解決型実習 AL⑤×1回, AL⑥×2回 準備:グループ間で課題解決方法を議論し、実装に向けた計画を策定する 課題:開発状況・成果について、報告書を作成する 15回 総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む・アクティブラーニング: ①3回,②3回,③6回,④6回,⑤1回,⑥2回 達成目標 a)適切なプログラム開発環境を構築できる(基礎) b)対象データを読み込み、第三者が理解できる形で表示できる(基礎) c)データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) が一タを活用できるようにディジタル信号処理を実行できる(応用) e)数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) シミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用) 評価方法・フィー 各講義においてレポートを提出する.		AL③×6回,AL④×6回 準備:応用問題についてプログラミングを行い,動作確認を行っておく				
AL⑤×1回、AL⑥×2回 準備:グループ間で課題解決方法を議論し、実装に向けた計画を策定する 課題:開発状況・成果について、報告書を作成する 15回 総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む ・アクティブラーニング: ①3回、②3回、③6回、④6回、⑤1回、⑥2回 達成目標 a) 適切なプログラム開発環境を構築できる(基礎) b) 対象データを読み込み、第三者が理解できる形で表示できる(基礎) c) データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) f) シミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用)	12-14回					
総括 ・対面型とオンラインを融合したハイブリット式で実施され、講義および演習を含む・アクティブラーニング: ①3回,②3回,③6回,④6回,⑤1回,⑥2回 達成目標 a) 適切なプログラム開発環境を構築できる(基礎) b) 対象データを読み込み、第三者が理解できる形で表示できる(基礎) c) データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) f) シミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用) 評価方法・フィー 各講義においてレポートを提出する.		AL⑤×1回,AL⑥×2回 準備:グループ間で課題解決方法を議論し,実装に向けた計画を策定する				
・アクティブラーニング: ①3回,②3回,③6回,④6回,⑤1回,⑥2回 達成目標 a) 適切なプログラム開発環境を構築できる(基礎) b) 対象データを読み込み,第三者が理解できる形で表示できる(基礎) c) データ解析に向けて,ファイル操作,行列操作,関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき,演算処理を行い,現象を客観的に示すことできる(応用) f) シミュレーション,機械学習などを含む,より高度なデータ解析ができる(応用) 評価方法・フィー 各講義においてレポートを提出する.	15回					
達成目標	・アクティフ	・アクティブラーニング:				
b) 対象データを読み込み、第三者が理解できる形で表示できる(基礎) c) データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用) f) シミュレーション、機械学習などを含む、より高度なデータ解析ができる(応用) 評価方法・フィー 各講義においてレポートを提出する.						
	b) 対象デー c) データ解 d) データを e) 数学や物:	b) 対象データを読み込み、第三者が理解できる形で表示できる(基礎) c) データ解析に向けて、ファイル操作、行列操作、関数・ワークスペース活用できる(基礎) d) データを活用できるようにディジタル信号処理を実行できる(応用) e) 数学や物理・化学の考えに基づき、演算処理を行い、現象を客観的に示すことできる(応用)				
ドバック 提出されたレポートについてはiLearn@SISTで結果をフィードバックする.		各講義においてレポートを提出する. 是出されたレポートについてはiLearn@SISTで結果をフィードバックする.				
評価基準 上記達成項目に照らし、以下のように評価する. 秀:100~90、優:89~80、良:79~70、可:69~60、不可:59以下						
教科書・参考書 適宜資料を配布する.	:考書 適宜資料を配	適宜資料を配布する.				
履修条件 プログラミング入門の単位取得者のみ履修可、良以上の学生が望ましい。 履修者制限を行うことがあるので初回授業には必ず出席すること。	履修者制限を	履修者制限を行うことがあるので初回授業には必ず出席すること。				
履修上の注意 ・本講義では修得した知識を実用することを重視するため、コンピュータを持参し、課題に取り組む ・積極的に演習・実習に取り組み、成果報告を行う ・予め配布された講義資料を用いて、学生自身による予習・復習が必須となる	積極的に消	・積極的に演習・実習に取り組み、成果報告を行う				
準備学習と課題の 内容 ・授業計画中に記載されている「準備学習」の内容(1.5時間)を必ず行うこと ・授業計画中に掲載されている「課題」の内容(1.5時間)を必ず行うこと ・実習における目標達成のために、講義以外の時間に各種必要な技術調査を行うこと	授業計画中	・授業計画中に掲載されている「課題」の内容(1.5時間)を必ず行うこと				
ディプロマポリ シーとの関連割合 (必須) 知識・理解:20%, 思考・判断:20%, 関心・意欲:20%, 態度:20%, 技能・表現:20%		知識・理解:20%,思考・判断:20%,関心・意欲:20%,態度:20%,技能・表現:20%				
DP1 知識・理解	理解					
DP2 思考判断	l断					
DP3 関心意欲	欲					

DP4 態度	
DP5 技能・表現	