講義科目名称: 数値解析1 C5-D51-30 科目コード: 19340

英文科目名称: Numerical Analysis 1

開講期間	配当年	単位数	科目必選区分
3年前期	3	2	選択(教職「数学」は選択)
担当教員	·		
幸谷 智紀			
添付ファイル			

講義概要	グ手法, 基	とれを取り巻く環境(Pythonエコシステム)の多様性を解説し、Pythonスクリプトの作成方法、デバッ 基本文法、モジュール・オブジェクト・クラスの概念を実習を理解してもらうと共に、理工系、特に イエンスでは必要となるNumPy、SciPy、matplotlib、Pandas等の代表的なモジュールの使い方を具体 产通じて理解していく。
授業計画	1	講義概要・成績評価方法,PythonとPythonエコシステム Python実習環境の構築 講義概要・成績評価方法。Pythonという言語とPythonエコシステムの概要 AL①②
		準備学習:Pythonという言語の特徴と利用方法を調べる 課題 :Python実習環境の構築
	2	Pythonプログラミング(1/4)Pythonの実行方法 Pythonにおける変数の扱いとオブジェクト 文字列データ型,数値データ型,入出力 Pythonにおける変数の扱いとオブジェクトについて理解し,基本的なデータ型とその利用方法を
		入出力記法を通じて学ぶ。 AL①②③ 準備学習:Pythonスクリプトの実行方法の確認
	3	課題 : 第2回目の指定課題を解く。 Pythonプログラミング(2/4)条件分岐(if~else) ループ(for, break, while)
		Pythonにおける条件判断と分岐,ループの記法を実例を通じて学ぶ。 AL①②③
		準備学習:既修得のプログラミング言語における条件分岐とループについて復習しておく。 課題 :第3回目の指定課題を解く。
	4	Pythonプログラミング(3/4)リスト,タプル(組),辞書(dict),集合(set),ファイル入出力 Pythonにおける複数データの扱い方を,リスト,タプル,辞書,集合という実例を通じて学び, それらをファイルに保存・呼び出す方法を習得する。 AL①②③
		準備学習:既修得のプログラミング言語における配列,構造体について復習しておく。 課題 :第4回目の指定課題を解く。
	5	Pythonプログラミング (4/4) 関数,モジュール,名前空間,クラス 独自の関数を構築し,複数の関数をまとめたモジュールを作成し,その利用方法を学ぶ。また, クラスの
		AL①②③ 準備学習:既修得のプログラミング言語における関数について復習しておく。 課題 :第5回目の指定課題を解く。
	6	math, cmath数学関数の使い方 math, cmathモジュールの関数を使って簡単な計算問題を解くためのPythonスクリプトを構築する。 AL①②③ 準備学習:第5回目までの内容を復習しておく。 課題:第6回目の指定課題を解く。
	7	代表的な理工系基盤的モジュールの紹介 NumPyの数学関数 理工系基盤的モジュールである, NumPy, SciPy, Matplotlib, Pandasの概要を理解し, NumPyの 基本計算機能を習得する。 AL①②③ 準備学習: NumPy, SciPy, Matplotlib, Pandasのインストールを済ませておく。
	8	課題 : 第7回目の指定課題を解く。 NDarrayとベクトル演算 Matplotlibによる関数グラフ NumPyの配列NDarrayを理解し、それを用いたMatplibによる関数グラフの描画方法を習得する。 AL①②③ 準備学習: Matplotlibで描画できるグラフについて調べておく。
	0	# ## # # # # # # # # # # # # # # # # #
	9	SciPyによる統計処理 Matplotlibによる統計の可視化SciPyの基本統計量の計算機能を習得し,Matplotlibを用いた統計データの可視化手法を学ぶ。AL①②③ 準備学習:SciPyの統計機能を調べておく。 課題 :第9回目の指定課題を解く。
	10	表計算ファイルとは? Pandasによる表計算ファイルの入出力 表計算ファイル(CSV, Excel)の構造を理解し,Pandasを通じた表計算ファイルの入手出力方法を 習得する。 AL①②③ 準備学習:Excelファイルの基本機能を調べておく。 課題 :第10回目の指定課題を解く。

	SciPy, Pandas, Matplolibによる統計解析ツールの作成 表計算ソフトウェアを使ってのデータ処理をPythonによって自動化する方法が,今まで学んで きた手法を組み合わせて可能になることを確認する。		
	AL①②③ 準備学習:Excelを使った統計処理とそのグラフ化を事前に実施してみる。		
	課題 : 第11回目の指定課題を解く。 12		
	HTML、CSSによるWebページ構成方法と、Flaskの概要とテンプレートの使い方について理解する。 AL①②③ 準備学習:HTMLとCSSについて調べておく。		
	課題 : 第12回目の指定課題を解く。		
	13 Flaskによる統計解析ツールのGUIアプリケーション作成 Flaskを用いて前回作成した統計解析ツールをWebアプリケーションに仕上げる。		
	AL①②③ 準備学習:前回構築した自動化スクリプトの内容を復習しておく。 課題 :第13回目の指定課題を解く。		
	14 オリジナルGUIアプリケーションの作成 今まで学んできたPythonアプリケーション構築技法を総動員し,誰にでも使える人にやさしいWeb アプリを構築し,そのマニュアルも作成する。		
	AL①②③ 準備学習:作りたい,かつ,作れそうなWebアプリケーションの構想を練っておく。 課題 :オリジナルのWebアプリを完成させ,第三者に使ってもらいその感想を書き留めて		
	おく。 15 まとめ		
	本講義のまとめと最終試験 AL①③		
	ルロの 準備学習:教材の内容を理解し,復習しておくこと。 課題 :今までの内容に即した最終試験を解く。		
授業形態	初回を除いてすべてPythonをインストールしたNote PCを用いて実習込の講義を行う。講義の最後には必ず		
	小テストを行い, 講義の理解度を確認する。 アクティブラーニング:①:15回,②:14回,③:14回,④:0回,⑤:0回,⑥:0回・・・講義中に受講生を指名し, 定義の確認,問題の解答を求める(AL①に相当)。小テスト(本日の課題)解答時には互いに相談も可とし (AL②),小テストの解説は次回の講義冒頭で行う(AL③)。		
達成目標	(1) Pythonスクリプトを作成・実行できるようになる (2) Pythonモジュールを構築し、クラスを用いたオブジェクトを構築できるようになる (3) NumPy, SciPyを用いた基本的な数値計算ができるようになる (4) matplotlibを用いたグラフ作成ができるようになる		
	(5) Pandasによる表計算ファイルの読み書きができるようになる (6) 実用的なデータサイエンス用GUIアプリケーションの構築ができるようになる		
評価方法・フィー ドバック	評価方法:最終試験50%,レポート課題50%で評価する。但し,最終試験が60点未満(100点満点),もしくは,		
	重要なレポート課題が未提出である場合,単位付与は行わない。 フィードバック方法:毎回の小テストは内容確認の上,次の週に押印して返却する。		
評価基準	総合評価: $100\sim90$ を秀(達成目標(1) \sim (6)), $89\sim80$ を優((1) \sim (5)), $79\sim70$ を良((1) \sim (4)), $69\sim60$ を可((1) \sim (3))、 59 点以下を不可とする。		
教科書・参考書	教科書 : 幸谷智紀「理工系のためのPython入門」(Web) https://na-inet.jp/python/		
履修条件	II類「微分積分/演習」・「線形代数/演習」、III類「プログラミング入門」を履修していることを必須条件とする。更に「応用線形代数」を履修していることが望ましい。		
履修上の注意	PythonとNumPy, SciPy, matplotlib, Pandas, Flask, Tkinterをインストールしたパソコンを持参すること。 平日昼休みをオフィスアワー(@543研究室)とする。		
準備学習と課題の 内容	①講義開始前に教科書を読み,内容について予習してくること。 ②小テストを講義時間内に提出できない場合は,次の講義までに解答し,講義開始時に提出すること。 ③予習・復習それぞれ1時間程度行うこと。		
ディプロマポリ シーとの関連割合 (必須)	知識・理解:40%, 思考・判断:30%, 関心・意欲:10%, 態度:10%, 技能・表現:10%		
DP1 知識・理解			
DP2 思考判断			
DP3 関心意欲			
DP4 態度			
DP5 技能・表現			