講義科目名称: 関数論 C6-D53-50 科目コード: 19300

英文科目名称: Complex Analysis

開講期間		配当年	単位数	科目必選区分	
3年後期		3	2	選択(教職「数学」は必修)	
担当教員					
幸谷 智紀					
系付ファイル					
	複素数の的な知識	の演算を理解し, 職を身につける。	実関数を複素関	数に拡張するための理路を学ぶ。その延長線上で複素解析のごく基礎	
授業計画	1	序論 本講義の	目標,数の体系の	復習,複素数の基本演算	
		AL①② 淮備学翌	·	2章の内容を理解する。	
		課題	: 第1~2章の練習	問題および演習問題を解く。	
	2	複素数の基本演算とMATLABの基本 複素数の基本演算とMATLABの使い方			
		後系数の AL①②③	弦平側昇 C MAILAD	が使い方	
		準備学習		の内容を理解する。 題および演習問題を解く。	
	3		・另3早の深音回点 亟座標表示	因のより独自同極を作く。	
			示の考え方とGaus	ss平面への応用	
		AL①②③ 準備学習	: 教科書・第4章(の内容を理解する。	
	4	課題	: 第4章の練習問題	題および演習問題を解く。	
	4		eの公式・Eulerの eの公式の導出とF	公式 Gulerの公式への拡張	
		AL(1)(2)(3)			
				5.1~5.2の内容を理解する。 2の練習問題および演習問題を解く。	
	5	1のn乗根			
		正n角形と AL(1)②(3)	して表現できる1	のn乗根	
		準備学習		5.3の内容を理解する。	
	6	課題 複素数の ³		習問題および演習問題を解く。	
		極座標表	示に基づく平方根	の定義	
		AL①②③ 進備学習	: 教科書・第5章	5.4の内容を理解する。	
		課題	: 第5章 5.4の練	習問題および演習問題を解く。	
	7	複素指数	関数 :式に基づく指数[期 数の定義	
		AL(1)(2)(3)			
				5.5の内容を理解する。 習問題および演習問題を解く。	
	8	複素三角		HIMENO OF OR HIME ENTINE	
		複素指数[AL①②③	関数に基づく複素	三角関数の定義	
		準備学習		6.1の内容を理解する。	
	9	課題 複素対数		習問題および演習問題を解く。	
	9			面に基づく関数化	
		AL(1)(2)(3)		6. 2の内容を理解する。	
				8.20万分を生所する。 習問題および演習問題を解く。	
	1 0		方程式の解法	d Lefter N	
		稷素数の♪ AL①②③	平万根を用いた2巻	欠方程式の解の公式の導出, n次代数方程式の解計算	
		準備学習		の内容を理解する。	
	1 1	課題 正則関数	・ 男 (早の)裸 首 向 ル	題および演習問題を解く。	
		正則関数の	の定義		
		AL①②③ 準備学習	: 教科書・第8章	8.1の内容を理解する。	
		課題	: 第8章 8.1の練習	習問題および演習問題を解く。	
	1 2	複素関数の 実関数の	ひ微分 数分・偏微分,複	 麦園粉の微分	
		AL(1)(2)(3)			
				8.3~8.4の内容を理解する。 4の練習問題および演習問題を解く。	
		H/N/C	. //40 /= 0.0 0.3		

	1 3 Newton法とフラクタル Newton法の考え方とNewton法に基づくJulia集合の描画 Newton法の考え方とNewton法に基づくJulia集合の描画 Newton法に基づくJulia集合の描画 Newton法の考え方とNewton法に基づくJulia集合の描画 Newton法に基づくJulia集合の描画 Newton法に基づくJulia
	AL①②③ 準備学習:教科書・第8章 8.6の内容を理解する。 課題 :第8章 8.6の練習問題および演習問題を解く。
	14 複素関数の積分(1/2)
	線積分の復習と複素平面上の積分の定義 AL①②③ はなけった。 は、大きなないである。
	準備学習:教科書・第9章の内容を理解する。 課題 :第9章の練習問題および演習問題を解く。
	15 複素関数の積分(2/2) Cauchyの積分定理とその応用
	AL①②③
	準備学習:教科書・第10章の内容を理解する。 課題 :第10章の練習問題および演習問題を解く。
授業形態	基本的には講義と演習を交互に実施し、理解度を確認するすための小テストを毎回実施する。コンピューター を用いた演習も行う。
	アクティブラーニング: ①:15回, ②:15回, ③:14回, ④:0回, ⑤:0回, ⑥:0回・・・講義中に受講生を指名し, 定義の確認, 問題の解答を求める (AL①に相当)。小テスト (本日の課題) 解答時には互いに相談も可とし (AL②), 小テストの解説は次回の講義冒頭で行う (AL③)。
達成目標	(1) 複素数の四則演算ができること (2) Gauss平面における複素数の極座標の意味を理解し、図として表現できること (3) 複素初等関数の定義を理解し、全て実数関数の拡張になっていることを説明できること (4) 正則関数の微分を、具体的な計算として実行できること
	(5) 複素関数の積分を, 具体的な計算として実行できること (6) 上記(1)~(5)をMATLAB等のプログラミング言語を使って計算できること
評価方法・フィー ドバック	評価方法:毎回課す小テストの結果(20%)と、最終試験の結果(80%)を加味して成績を決定する。 フィードバック方法:小テストは次回講義時までに内容を確認し、その結果を押印して返却する。
評価基準	単位認定は、最終試験の得点が60点以上、講義時に毎回課す小レポートの提出回数(少なくとも80%以上)と得点 (5段階評価)、中間レポートの得点を加算して決定する。 秀:100~90((1)~(6)達成)、優:89~80((1)~(5)達成)、良:79~70((1)~(4)達成)、可:69~60((1)~(3)達成)、不可:59以下)
教科書・参考書	教科書:幸谷智紀「初歩からのFFT」(SIST)
履修条件	微分積分に関する科目を履修していること。
履修上の注意	初回を除いてMATLABをインストールしたNote PCを使うので準備しておくこと。 平日昼休みをオフィスアワーとする。
準備学習と課題の 内容	あらかじめ講義内容を予習しておくこと。特に実関数の微分積分の内容を復習しておくこと。 授業ごとに2時間以上の復習を欠かさないこと。
ディプロマポリ シーとの関連割合 (必須)	知識・理解: 40%, 思考・判断: 30%, 関心・意欲: 10%, 態度: 10%, 技能・表現: 10%
DP1 知識・理解	
DP2 思考判断	
DP3 関心意欲	
DP4 態度	
DP5 技能・表現	