講義科目名称: 人間・生命情報の統計学応用 D4-BD43-30 科目コード: 21230

英文科目名称: Statistics for Human and Life Sciences (Advanced)

開講期間	配当年	単位数	科目必選区分		
3年後期	3	2	選択		
担当教員					
津田 裕之					
添付ファイル					

你リノアイル						
講義概要	学基礎』 実はこれ	、2年後期に開講された『人間・生命情報の統計学基礎』の後継科目である。『人間・生命情報の統計では、t検定・回帰分析・分散分析など、一般線形モデルと呼ばれる枠組みの統計的分析を解説した。らの分析はすべて、回帰分析のバリエーションである。すなわち回帰分析を理解することは、様々な析の基礎を習得することでもある。				
	モデル・	人間・生命情報の統計学応用』では、全15回をかけて、回帰分析およぶその拡張である、「一般線形 一般化線形モデル・一般化線形混合モデル」を解説する。また、この一連の解説を通じて、データの ニズムを確率分布を含む数理モデルで表現する、「統計モデリング」という考え方を伝える。				
		学に加えて、プログラミング言語(RやJuliaなど)を用いて、受講生自身が様々な統計的分析や統計 グを実現できるよう、実習を行う。				
	なお履修	なお履修者の要望や講義の進行速度に応じて、講義内容は柔軟に変更する可能性がある。				
授業計画	1	記述統計学の復習(理論編) 実験や調査により獲得したデータの特徴を理解するための記述統計学(平均、分散、標準偏差、 共分散、相関係数など)について数理的な解説を行う。				
	2	AL①、③、④ 記述統計学の復習(実習編) プログラミング言語Rを用いて、記述統計量の計算を行う。Rのインストールや基本的使用方法に ついても解説を行う。				
	3	AL①、③、④ 記述統計学としての線形回帰モデル 2変数間の関係を表す統計モデルとして、線形回帰モデルについて数理的な解説を行う。また、 プログラミング言語Rを用いて、モデルのパラメータを推定する。				
I	4	AL①、③、④ 推測統計学の復習 実験や調査により獲得したデータから、母集団の要約統計量である母数を推定する方法を解説 する。また、プログラミング言語Rを用いて、95%信頼区間を推定したり、帰無仮説検定を行った りする方法を解説する。				
	5	AL①、③、④ 2群間の平均値差の推定 因果効果の推定において、実験は最も効果的な手法である。因果効果の大きさを推定する方法として、2群間の平均値差に関する点推定や区間推定、t検定を解説する。プログラミング言語Rを用いた実習も行う。				
	6	AL①、③、④ 3群以上の平均値差の推定 2群間の平均値差の推定を拡張した、3群以上の間で平均値差を推定する方法である、分散分析を紹介する。また、プログラミング言語Rを用いた実習も行う。				
	7	AL①、③、④ 2要因以上の分散分析 第6回の講義内容は、「1要因分散分析」と呼ばれる手法であるが、第7回では拡張されたモデルで ある「2要因分散分析」について数理的な解説と、プログラミング言語Rを用いた実習を行う。				
	8	AL①、③、④ 線形回帰モデルから一般化線形モデルへ これまで解説してきたt検定、分散分析は、いずれも線形回帰モデルで表現することができる。 これらのモデルを拡張して、正規分布以外の確率分布(指数分布族)を利用した一般化線形 モデルの解説とプログラミング言語Rを用いた実習を行う。				
l	9	AL①、③、④ 最尤法 一般化線形モデルのパラメータを推定する上で必要となる最尤法について解説する。また、 最尤法を理解する上で前提となる確率分布についても復習する。				
		$AL \odot$ \odot \odot				

	10 ロジスティック回帰分析、ポアソン回帰分析 一般化線形モデルのなかでも代表的な、ロジスティック回帰分析とポアソン回帰分析について 解説を行うとともに、プログラミング言語Rを用いた実習を行う。		
	AL①、③、④ 11 一般化線形モデルから階層線形モデルへ 一般化線形モデルをさらに拡張して、階層化されたデータ構造を扱うことができる階層線形 モデルの解説を行う。また、プログラミング言語Rを用いた実習を行う。まずは切片にグループ間 変動を仮定した変量切片モデルを解説する。		
	AL①、③、④ 12 階層線形モデル(その2) 第11回目の講義の続きである。切片のみならず、回帰係数にもグループ間変動を仮定したモデル を紹介するとともに、プログラミング言語Rを用いた実習を行う。		
	AL①、③、④ 主成分分析 相関のある複数の変数を合成し情報圧縮を行う手法の一つである、主成分分析について解説する とともに、統計分析ソフトウェアHADを用いた実習を行う。		
	AL①、③、④ D子分析 相関のある複数の変数の背後に共通の潜在変数を仮定する、因子分析について解説するととも に、統計分析ソフトウェアHADを用いた実習を行う。		
	AL①、③、④ より自由な数理モデルへ ここまでの講義内容は全て、既存のモデルにデータを当てはめる試みであった。一方、獲得した データが生成されるメカニズムについて仮説を立て、理論的に数理モデルを導出する試みも存在 する。本講義では、これらの数理モデルの例を紹介する。		
1-5 M/c	ALD, 3, 4		
授業形態	講義と実習形式で行う。 アクティブラーニング:①:15回,②:0回,③:15回,④:15回,⑤:0回,⑥:0回		
達成目標	a) 記述統計量について理解し、ソフトウェアを用いて算出できるようになる b) 統計モデルとして、一般線形モデルのうち、説明変数が量的である回帰モデルを理解し、ソフトウェアを用いてパラメータを推定できるようになる c) 統計モデルとして、一般線形モデルのうち、説明変数が質的である回帰モデル (すなわち分散分析モデル)を理解し、ソフトウェアを用いてパラメータを推定できるようになる d) 統計モデルとして、一般化線形モデルを理解し、ソフトウェアを用いてパラメータを推定できるようになる e) 統計モデルとして、一般化線形混合モデルを理解し、ソフトウェアを用いてパラメータを推定できるようになる		
 評価方法・フィー	f) その他、より柔軟な数理モデルについて理解を深める ・毎週提出を求める、講義または実習に関する課題(5点×15週)。		
ドバック	この内容は、その週または次週に講義内でフィードバックする。 ・最終レポート (25点。ただし提出は任意)		
評価基準	上記の「達成目標」と関係する、上記の「評価方法」記載の内容により得点化し、以下の基準で成績を判定する。 秀:100~90 優:89~80 良:79~70 可:69~60 不可:59以下		
教科書・参考書	参考書: ・『心理学統計法』著:清水裕士(放送大学教育振興会) ・『データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC』著:久保 拓弥(岩波書店) ・『Excelで今すぐはじめる心理統計 簡単ツールHADで基本を身につける』著:小宮あすか・布井雅人(講談社)		
	このほか、スライドや資料を共有する。		
履修条件	情報デザイン学科の学生は『人間・生命情報の統計学基礎』を履修済みであること(履修していれば、必ずしも単位を取得していなくてもよいが、単位取得済みであることが望ましい)。 コンピュータシステム学科の学生は『統計解析』『多変量解析』など、統計学に関係する何らかの科目を履修済みであることが望ましい。		
履修上の注意	他の類似の講義と同様に、統計学では積み上げ式の理解が必要となる。ある回に学習した内容に基づき、その次の回の講義が行われる。そのため、毎週毎週、確実に理解を積み重ねていくことが必須となる。本講義では、ソフトウェアを用いた実習を行うが、優先的に理解してほしいことは、種々の統計的分析の背後にある理論である。それらの理論をしっかり理解したうえで、ソフトウェアの使い方を習得することを期待する。		
準備学習と課題の	講義では毎週ノートPCを持参すること。 各回の講義前後に、少なくとも1.5時間の予習/復習を行うこと。講義資料は事前にiLearn@SISTにアップロード		
内容	するので、それを用いて事前学習を行うこと。		
ディプロマポリ シーとの関連割合 (必須)	知識・理解:30%, 思考・判断:30%, 関心・意欲:30%, 態度:5%, 技能・表現:5%		
	909		

DP1 知識・理解	
DP2 思考判断	
DP3 関心意欲	
DP4 態度	
DP5 技能・表現	