講義科目名称: 安全性設計論 科目コード: 51440

英文科目名称: Design for reliability and safety

開講期間	配当年	単位数	科目必選区分		
1・2年前期	1 • 2	2	選択		
担当教員	·	·			
越水 重臣					
添付ファイル				·	

添付ファイル				
講義概要	本講義では、製品安全を確保するために必要な信頼性設計、保全性設計、安全性設計の方法について講義したのち、信頼性解析の手法であるFMEA(Failure Mode and Effects Analysis)、安全性解析の手法であるFTA (Fault Tree Analysis)、リスクアセスメントの手法であるR-mapについて演習を通じて学ぶ。			
授業計画	1 講義の全体説明、製品安全に必要となる信頼性・安全性設計 本講義では製品安全のための信頼性・安全性設計を扱う。初回の講義では、「信頼性」「保全 性」「安全性」の概念と評価方法を理解する。			
	2 製品安全のための設計法(設計思想) フールプルーフ、フェイルセーフ、フェイルソフト			
	3 信頼性設計 信頼性の評価、バスタブ曲線、信頼性設計			
	4 保全性設計 保全性の評価、アベイラビリティ、摩耗劣化故障、保全性設計			
	5 信頼性データの解析 ワイブル解析による故障タイプの判別			
	6 FMEA 信頼性解析手法、FMEA(Failure Mode and Effects Analysis)の概要、故障と故障モードのちがい、FMEAの解析手順			
	7 FTA 安全性解析手法、FTA(Fault Tree Analysis)の概要、FT図の作成ルール、FT図による定性的解析と表現的解析			
	8 FTAの演習 実際の製品を対象としたFT図の作成、FT図を用いた定性的解析と定量的解析の演習			
	9 製品のリスクアセスメント① 危害シナリオからFTAへの展開			
	10 製品のリスクアセスメント② R-mapによるリスクの評価			
	11 製品のリスクアセスメント③ リスク低減策の策定、3ステップメソッド			
	12 安全性設計 失敗学に学ぶ本質安全と制御安全			
	13 人間信頼性(ヒューマンエラー対策) ヒューマンエラーを引き起こす人的要因(ヒューマンファクター)、ヒューマンエラーの対策			
	14 ワールドカフェによる議論 ワールドカフェ方式による議論の方法説明および演習、第15回の講義でワールドカフェを実践する			
	15 ワールドカフェ方式による最終レポート課題についての成果発表 最終レポート課題についての成果発表会を実施、質疑応答、総合討論、講義のまとめ			
授業形態	講義および演習(個人ワークとグループワーク) アクティブラーニング:①:13回,②:5回,③:0回,④:1回,⑤:0回,⑥:0回			
達成目標	①信頼性設計、保全性設計、安全性設計の特徴を理解できる ②FMEAの解析が実施できる ③FTAの解析が実施できる ④リスクアセスメントの手法であるR-Mapが実施できる			
評価方法・フィー ドバック	講義時間内での演習の結果を20%、課題レポートを80%として評価する。			
評価基準	秀:100~90、優:89~80、良:79~70、可:69~60、不可:59点以下			
教科書・参考書	なし			
履修条件	なし			
履修上の注意	課題レポートを必ず提出すること。課題レポートは複数出題されます。関数電卓を持参すること。ノートPCを使用する場合は、持参の指示をする。			
準備学習と課題の 内容	・初回までにシラバスを読み、授業の目的や内容を理解しておくこと ・講義内容をよく復習し、次回の講義に臨むこと			

ディプロマポリ シーとの関連割合 (必須)

知識・理解: 40%, 思考・判断: 20%, 関心・意欲: 10%, 態度: 10%, 技能・表現: 20%