講義科目名称: 機械金属材料学 科目コード: 52010

英文科目名称: Engineering Materials Science

開講期間		配当年	単位数	科目必選区分
1・2年後期		1 • 2	2	選択
担当教員		1	1	
吉見 直人				
<u></u>				
添付ファイル				
190(1)				
- 10 No Inst	1			
講義概要	た、金属 さらに薄	材料について、	主に実用的に重要 鋼板の特性や最適	が状態図、加工、強化機構など)を取り上げ、深堀して説明する。ま 要な鉄鋼材料を取り上げ、特徴・性質・利用技術について説明する。 近の動向についても取り上げる。講義を通じて、機械材料に関する基
授業計画	1		金属材料・鉄鋼	
				D歴史、特徴について説明する。(AL①) 材料の特徴について関心をもち、理解する。
	2	凝固	. 並属的村、奶蛐	例が付め付送に ジャで関心をもり、圧解する。
	-	凝固、均		いて説明する。(AL①、③)
				:結晶成長について調べ、発表する。 -
	3		晶構造、格子欠陥 - 結点構造 - 占欠	i :陥、熱平衡空孔について説明する。(AL①、③)
				色と格子欠陥について調べ、発表する。
	4	拡散		
			教、格子間拡散、 : 拡散について調	拡散の活性化エネルギーについて説明する。(AL①、③)
	5		図(1)、同素変態、	
		同素変態、	拡散変態、無拡	散変態、固溶体、ついて説明する。(AL①、③)
	C			て調べ、発表する。
	6		図(2)、測温、溶剤 執電対	解度 、てこの原理、溶解度曲線について説明する。。(AL①、③)
				電対)原理について調べ、発表する
	7		図(3)、平衡凝固。	
		全率固溶	型状態図、平衡/ヲ ・亚衡母能図と為	非平衡凝固、ミクロ偏析について説明する。(AL①、③) E固の関係、偏析について調べ、発表する。
	8		・ 千萬水 恋凶 C 朔 図(4) 、不変系反原	
		共晶反応、	包晶反応、偏晶	a反応について説明する。(AL①、③)
			: 共晶反応、包晶	a反応、偏晶反応について調べ、発表する。
	9	時効硬化	用 時効処理 析	・ 出強化について説明する。(AL①、③)
				対硬化について調べ、発表する。
	10	すべり変わ		
			すべり変形、転 : 転位について調	位、転位の増殖機構について説明する。(AL①、③) は、 発表する
	11		回復・再結晶	1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
		加工硬化、	回復、再結晶に	ついて説明する。(AL①、③)
	10			こついて調べ、発表する。
	12		効、薄鋼板 効、コットレル雰	・ ・囲気、BH鋼板、IF鋼について説明する。(AL①、③)
		予習課題	: ひずみ時効につ	いて調べ、発表する。
	13	高強度鋼	* *	佐御七月 へいて説明より (4.0.0.0.0.)
		金属材料(予習課題	ク烛化機傅、局姫 : 高強度鋼板につ	R度鋼板について説明する。(AL①、③) Dいて調べ、発表する。
	14		。 食、表面処理鋼板	
		電位-pH	図、腐食反応、豆	亜鉛めっき鋼板について説明する。(AL①、③)
	4.5	予習課題		ついて調べ、発表する。
	15	まとめ	とめ、実力確認演	(AL(3))
		準備学習	: 1~14回の講義に	では、(ALO)) について、復習をして理解する。
授業形態	$(2)^{-\frac{1}{2}}$	構義資料を中心 予習課題を提示 ブラーニング:	し、各自で調べて	「くる。その内容を発表する。 ③:14回, ④:0回, ⑤:0回, ⑥:0回
達成目標			能について理解し	
		オ料の結晶構造、 犬態図についてヨ		って理解している。
	d)金属标	オ料の機械的性質	質と評価法につい	って理解している。
	e) 金属标	オ料の変形につい	ハて理解している こついて理解して	00
	g)炭素釒	綱・合金鋼につい	ハて理解している	
	h) 鉄のA	腐食と防食の基準	本について理解し	ている。
	1/	以 • 衣 即 处 埋 婀 /	双ツ本平、種類、	用途について理解している。

評価方法・フィードバック	予習課題レポート、演習課題により評価する。 予習課題レポートについては、重要キーワードを使って、学んだこと、自分で調べたことをまとめてもらう。 演習課題では、講義内容についての理解度テストを行う。 予習課題レポートおよび演習により、理解度を総合的に評価する。 原則として、予習課題レポートのフィードバックは授業内で実施する		
評価基準	総合点が100点満点で60点以上の者に単位を与える。 秀(a~i全項目):100~90、優(a~iのうち7項目):89~80、良(a~iのうち6項目):79~70、可(a~iのうち5項目):69~60、不可:59以下		
教科書・参考書	参考書:①公益社団法人日本材料学会編『機械材料学 第5版』、②幸田成康 著『改訂 金属物理学序論』,コロナ社、③日本金属学会編『講座・現代の金属学 材料編第4巻 鉄鋼材料』,丸善、④牧 正志 著『鉄鋼の組織制御 その原理と方法』,内田老鶴圃 その他		
履修条件	機械材料学、材料加工学の講義内容を理解していることが望ましい		
履修上の注意	なし		
準備学習と課題の 内容	毎回の予習課題について、自ら調べ(1.5時間)、自分のものとして理解したうえで説明できるよう、講義にのむこと。		
ディプロマポリ シーとの関連割合 (必須)	知識・理解:40%, 思考・判断:20%, 関心・意欲:20%, 態度:10%, 技能・表現:10%		