講義科目名称: 流体力学詳論 科目コード: 51820

英文科目名称: Advanced Fluid Dynamics

開講期間	配当年	単位数	科目必選区分		
1・2年後期	1 • 2	2	選択		
担当教員					
牧野 育代					
添付ファイル	·		·	·	

構義概要	本講義は、宇宙環境、地球環境、生命現象、生物挙動などあらゆる場において普遍的に見られる流れ現象と その理解の現状について解説する。				
授業計画	1 序論 ・流体力学の概要と本科目の位置づけ				
	2 流体運動の基礎(1) ・保存原理とその数学的表現 ・保存原理を用いた質量保存則の定式化				
	3 流体運動の基礎 (2) ・保存原理を用いた運動量保存則の定式化 ・ナビエ・ストークス方程式の導出1				
	4流体運動の基礎(3)・ナビエ・ストークス方程式の導出2				
	5 流体運動の基礎(4) ・保存原理を用いたエネルギー保存則の定式化 ・エネルギー方程式の導出				
	6 流体運動の基礎 (5) ・境界層近似の成立条件 ・境界層方程式の導出				
	7 総合演習(1) 第1回~第6回までの演習				
	8 圧縮性流体の力学(1) ・気体の圧縮性とマッハ数 ・音波の伝ば速度				
	9 圧縮性流体の力学 (2) ・亜音速流れと超音速流れ ・衝撃波の発生				
	10 圧縮性流体の力学(3) ・ 1 次元流れの基礎方程式 ・ 連続の式、運動量の式、エネルギの式				
	11 圧縮性流体の力学 (4) ・管路における 1 次元等エントロピー流れ ・等エントロピー流れにおけるチョーキング				
	12 圧縮性流体の力学 (5) ・垂直衝撃波に関する式 ・ランキン・ユゴニオの式				
	13 圧縮性流体の力学(6) ・超音速ノズルの流れ ・垂直衝撃波の形成条件、不足膨張と過膨張				
	14 総合演習 (2) 第8回~第13回までの演習				
	15 流体力学の最新研究動向 ・流体力学における最近の主要研究トピックスについて紹介				
美形態	講義が中心であるが演習も行う。 アクティブラーニング:①:5回,②:回,③:回,④:5回,⑤:回				
5成目標	a. 保存原理の数学的表現を理解できる。 b. 質量保存、運動量保存、エネルギー保存の各保存則を保存原理から導出し定式化できる。 c. 超音速流れと衝撃波の形成に関する現象を理解できる。 d. 衝撃波前後の流れの物理量を1次元等エントロピー流れの関係式を利用し計算することができる。				
グ価方法・フィ ババック	一 授業内で行う演習およびレポートで総合評価する。評価割合は演習30%、レポート70%とする。				
延価基準	「原則として、レポート・小テスト等のフィードバックは次回以降の授業内で実施する」 総合点が100点満点で60点以上の者に単位を与える。秀:100点~90点、優:89点~80点、良:79点~70点、				
(科書・参考書	可: 69点~60点、不可: 59点以下 教科書: 資料配布				

履修条件	流体工学1,流体工学2のいずれをも履修していることが望ましい。 本学学部生履修科目の『微分積分/演習』および『微分方程式』の内容を修得済みであること。		
履修上の注意	関数電卓を持参すること。		
準備学習と課題の 内容	授業毎の復習を欠かさないこと。不足している知識については、授業で紹介する参考図書で学習しておくこと。		
	(毎回、予習復習それぞれ1.5時間程度)		
ディプロマポリ シーとの関連割合 (必須)	オフィスアワーについては第1回目の授業で説明する。 知識・理解:30%, 思考・判断:40%, 関心・意欲:10%, 態度:10%, 技能・表現:10%		