講義科目名称: 電力エネルギー工学 科目コード: 51660

英文科目名称: Electric Power and Energy System

開講期間		配当年	単位数	科目必選区分
1・2年後期		1 • 2	2	選択
担当教員			<u> </u>	
石田 隆弘				
添付ファイル				
講義概要		ネルギー」は我		ドー」に対する需要はますます高まっている. て欠くことのできない存在であり、現代社会を支える基盤となるエネ
	このよう(度に制御 本講義で(こ社会活動を支 する必要がある		ドーを効率良く需要家に供給するには、発電・送電・変電・配電を高 よび運用・制御などのソフト両面の理解を深め、電力エネルギーの将
授業計画	1	電力エネル	レギー工学につい レギ工学の概要(
		・シラバン 課題	スをよく読み、講	義内容について理解する
	2	・講義内 電力シス 発電・送	容について理解を テムの構成 電・電力系統(AL	深めるためディスカッションを行う(AL⑤⑥) ①②)
		準備学習 ・テキス 課題	ト「発電・送電・	電力系統」を説明できるようにする
	3	・講義内 送電設備		深めるためディスカッションを行う (AL⑤⑥)
		準備学習		中送電線」を説明できるようにする
	4	・講義内 変電設備 変電所・1		深めるためディスカッションを行う(AL⑤⑥) ②)
		準備学習 ・テキス 課題	ト「変電所・地下	変電所」を説明できるようにする
	5	• 講義内 送電線路	容について理解を D電気特性 ・架空送電線(AL	深めるためディスカッションを行う(AL⑤⑥) ①②)
			ト「送電線路・架	空送電線」を説明できるようにする
	6	送電容量	容について理解を ・三相交流システ	深めるためディスカッションを行う(AL⑤⑥) ム (AL①②)
		準備学習		相交流システム」を説明できるようにする
	7	·講義内容 有効電力。	容について理解を と無効電力 図・電力潮流計算	深めるためディスカッションを行う(AL⑤⑥) (AL①②)
		テキス 課題		電力潮流計算」を説明できるようにする
	8	電力シス	テムの運用と制御	深めるためディスカッションを行う(AL⑤⑥) ・電圧制御)(AL①②)
		テキス課題		過渡安定度」を説明できるようにする 深めるためディスカッシュンを行う(M.G.G.)
	9	電力シス定常安定	Aについて理解を テムの安定性 度・過渡安定度(深めるためディスカッションを行う(AL⑤⑥) AL①②)
		準備学習 ・テキス 課題	卜「電力系統制御	(周波数制御・電圧制御)」を説明できるようにする
		・講義内	容について理解を 	深めるためディスカッションを行う(AL⑤⑥)

	10	電力システムの故障計算 故障の形態・故障計算(AL①②)			
		準備学習 ・テキスト「故障の形態・故障計算」を説明できるようにする			
		課題			
	11	・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥) 過電圧とその保護・協調			
		過電圧の種類・サージ現象・絶縁協調(AL①②) 準備学習			
		・テキスト「過電圧の種類・サージ現象・絶縁協調」を説明できるようにする			
		課題 ・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥)			
	12	電力システムにおける開閉現象 電力用開閉装置・開閉サージ(AL①②)			
		準備学習 ・テキスト「電力用開閉装置・開閉サージ」を説明できるようにする			
		課題			
	13	・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥) 配電システム			
		配電システム・配電機器 (AL①②) 準備学習			
		・デキスト「配電システム・配電機器」を説明できるようにする 課題			
	1.4	・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥)			
	14	直流送電 直流送電と交流送電・交直変換(AL①②)			
		準備学習 ・テキスト「直流送電と交流送電・交直変換」を説明できるようにする			
		課題 ・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥)			
	15	環境に優しい新しい電力システム			
		分散エネルギ・エコエネルギ(AL①②) 準備学習			
		・テキスト「分散エネルギ・エコエネルギ」を説明できるようにする課題			
	2#-24-) = 13A	・講義内容について理解を深めるためディスカッションを行う (AL⑤⑥)			
授業形態	講義と討論 アクティブラ	ーニング:①:15回,②:15回,③:0回,④:0回,⑤:15回,⑥:15回			
達成目標		ムの構成を理解できる について理解できる			
	c)電力システ	こって この運用について理解できる ムの保護方式について理解できる			
	e)新しい電力	システムについて理解できる			
評価方法・フィー ドバック	各自に課題とするレポートで総合評価する レポート報告時に口頭試問し,解説を加え結果をフィードバックする				
評価基準		e):レポートの内容が100~90点 e):レポートの内容が89~80点			
	3)「良」(a~	d):レポートの内容が79~70点			
	5)「不可」:	c):レポートの内容が69~60点 レポートの内容が60点未満の場合			
教科書・参考書	教科書:大久保仁著『電力システム工学』オーム社 参考書:永田武著『電力システム工学の基礎』コロナ社 大澤靖治編著『電力システム工学』オーム社				
履修条件	なし				
履修上の注意	なし				
準備学習と課題の 内容	①初回までにシラバスを読み、授業項目や目的を理解しておくこと ②2回目以降は各授業の終わりに準備学習の内容を指示する ③予習を含め毎回3時間以上授業外に復習をして次の授業に臨むこと				
ディプロマポリ シーとの関連割合 (必須)	知識・理解:20%, 思考・判断:30%, 関心・意欲:20%, 態度:10%, 技能・表現:20%				