講義科目名称: 建築振動論 科目コード: 52240

英文科目名称: Structural Dynamics

開講期間		配当年	単位数	科目必選区分	
1・2年後期		1 • 2	1・2 4 選択		
担当教員					
崔 琥					
添付ファイル					
講義概要	震を受ける 系から非総 この学習を 動モデルに	るときの挙動(泉形系へと、学 を通して、骨組 こ各種の地震動	地震応答)につい 習内容は1自由度 構造を質点系モラ	ヽて講義し、耐震設計の基礎 系から多自由度系へと、ま7 デルに置換し、動的な釣り合 ○挙動(応答)を目止めるこ	が提として、建築構造物の動的な特性や地 を知識を学習させる。学習対象は線形弾性 た自由振動から強制振動へと段階を追う。 い式を誘導することをはじめとして、振 とや、コンピュータ・プログラムによる
授業計画	第1回			説明および線形1自由度系のの位置ではよみでは)非減衰自由振動 キュラムに対する位置づけの説明
	第2回	・授業の会 ・「動的タ 【授業目标 【準備学習	全体的な流れの説 外力の概要、振動 票】線形1自由度系 習】構造力学III <i>0</i> 1~6の「線形1自	明 問題の分類、線形1自由度系 系における非減衰自由振動の	における非減衰自由振動」の説明・計算 定式化を習得(AL①、AL②) 「応力」、「変形」を求めるようにする。
	77 215	• 「線形1	自由度系における	る非減衰自由振動」の復習	
		【授業目標 【準備学習	票】様々な構造物 習】テキストP6~	の「固有周期」の説明・計 の固有周期の求め方を学習 10の「各種演習問題」が説明	(AL1, AL2)
	第3回		度系の減衰自由拡		
		・「線形1 【授業目 【準備学 【課題】	自由度系における 票】線形1自由度系 図】テキストP10~ 泉形1自由度系の源	域衰自由振動の応用問題の計	三式化を習得(AL①、AL②) 衰自由振動」が説明できるようにする。
	第4回	・「線形1 ・「自由技 【授業目标 (AL①、A	票】自由振動にお L②)	辰動」の復習 定数h」の影響に関する説明 ける減衰定数hの求め方やそ	の大小が構造物の振動に与える影響を習得
	第5回	周期外力ル ・「自由払	こ対する振動 - 強 辰動における減衰 力のうち、「強制	制外力による正常振動・機 定数h」の復習	衰自由振動」が説明できるようにする。 滅振動・基礎への周期外力による正常振動 辰動・基礎への周期外力による正常振動」
		【授業目標 る正常振動 【準備学習 P15~16の 【課題】』	票】周期外力の種 動の求め方を習得 習】テキストP16〜 「振動計」、配存 共振点における変	(AL①、AL②) ~22の「強制外力に対する正 F資料が説明できるようにす	常振動、機械振動、基礎への周期外力によ :常応答・調和地動に対する正常応答」、 る。 動での変位の動的応答倍率の最大値、位相
	第6回		(AL③、AL④) ご対する振動-正	常応答の性質・基礎への周5	期外力による過渡応答・任意外力に対する
	344	応答			
		の復習 ・周期外記 答」の説明 【授業目標 方を習得	カのうち、「正常 明・計算 票】正常応答の性 (AL①、AL②)	応答の性質・基礎への周期タ 質、基礎への周期外力による	辰動・基礎への周期外力による正常振動」 外力による過渡応答・任意外力に対する応 る過渡応答、任意外力に対する応答の求め
	第7回	正常振動心 ・「各種原 ・「正常力 ・「Duham 【授業目標	こおけるエネルギ 周期外力」の求め 辰動におけるエネ nel積分法による原 票】正常振動時の	一消費・応答計算手法 方の復習 ルギー消費」の説明・計算 5答計算手法」の説明・計算	対渡応答」が説明できるようにする。 i め方、Duhamel積分法による応答計算手法を
	第8回	【課題】D 答の計算 応答スペク	習】テキストP26〜 Juhame1積分法を月 (AL③、AL④) ケトル・スペクト	別いた応答の計算、矩形パル	ける応答」が説明できるようにする。 νス外力および色んな形状の外力におけるΩ
		・「応答? ・「だスペート ・「受業の意味 ・「受難の ・「でできる。」 ・「できる。 ・「できる。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	スペクトル」の説 クトル強度」の説 票】応答スペクト 未を習得(AL①、	明・計算 明・計算 ルの求め方および応答スペク AL②) ~54の「地震応答スペクトル	クトルの一般的な特徴を学習、スペクトル ・振動とエネルギー・等価粘性減衰・複素

	第9回	1質点系の非線形応答ー弾塑性復元力特性 ・「1質点系の線形応答」の復習 ・「弾塑性復元力特性およびモデル」の説明 【授業目標】非線形応答を求める際に不可欠な弾塑性復元力モデルの種類とその性質を習得(AL			
	第10回	①、AL②) 【準備学習】テキストP113~117の「弾塑性復元力特性」、配布資料が説明できるようにする。 1質点系の非線形応答-数値積分法 ・「弾塑性復元力特性」の復習 ・「各種数値積分法」の説明 【授業目標】数値積分法である直接積分法、Runge-Kuntta法、中央差分法、線形加速度法、平均			
		【授業日保】数値積分法である直接積分法、kunge-kuntta法、中央左分法、線形加速度法、平均加速度法、Newmark-法、Wilson-法を習得(AL①) 【準備学習】テキストP97~112の「応答の数値解析」、配布資料が説明できるようにする。 【課題】①6種類の数値積分法のうち、2種類の数値積分法を選んで、Matlabで各自プログラムを作成し、振動解を計算すること.②提供された地震波に対し、変位、速度、加速度の応答スペクトルを求めること(プログラムは			
	第11回	Matlabで作成すること). 1質点系の非線形応答-減衰の考え方・弾塑性応答量と弾性応答の関係 ・「各種数値積分法」の復習 ・「減衰の考え方」の説明 ・周期の大小による「弾塑性応答量と弾性応答の関係」の説明			
		【授業目標】減衰の考え方および周期の大小による弾塑性応答量と弾性応答との関係を習得(AL①、AL②) 【準備学習】テキストP113~144の「弾塑性応答」、配布資料が説明できるようにする。			
	第12回	多質点系の線形応答-振動方程式・非減衰自由振動と固有値 ・「1質点系の線形応答および非線形応答」の復習 ・「振動方程式」の定式化			
		・「非減衰自由振動と固有値」の説明・計算 【授業目標】多質点系の線形応答における振動方程式の定式化や固有値の性質および計算手法を 習得(AL①、AL②) 【準備学習】テキストP55~69の「多自由度系の線形応答の振動方程式・非減衰自由振動」が説明			
	第13回	できるようにする。 多質点系の線形応答ー固有ベクトルの性質 ・多質点の線形応答の「振動方程式」と「非減衰自由振動と固有値」の復習			
		・「固有ベクトルの性質」の説明 【授業目標】多質点系の線形応答における固有ベクトルの性質を習得(AL①、AL②) 【準備学習】テキストP79~82の「モーダルアナリシス」が説明できるようにする。			
	第14回	多質点系の線形応答一固有値問題の数値解析 ・多質点の線形応答の「固有ベクトルの性質」の復習 ・「固有値問題の数値解析」の説明・計算			
		「固有値向題の数値解析」の説明・計算 【授業目標】多質点系の線形応答における固有値問題の数値解析を習得(AL①、AL②) 【準備学習】テキストP90~96の「固有値の計算」が説明できるようにする。 【課題】3質点系の振動モードと周期の計算(AL③、AL④)			
	第15回	多質点系の線形応答ー非減衰強制振動・減衰のある自由振動・減衰のある強制振動・地震応答・ 最大応答の推定・数値積分法 ・多質点の線形応答の「固有値問題の数値解析」の復習			
		・「非線形強制振動」の説明 ・「減衰のある自由振動」の説明 ・「減衰のある強制振動」の説明 ・「減衰のある強制振動」の説明 ・「地震応答」の説明			
		・「最大応答の推定」の説明 ・「数値積分法」の説明			
		【授業目標】多質点系の線形応答における非線形強制振動、減衰のある自由振動・強制振動、地震応答、最大応答の推定や数値積分法を習得(AL①、AL②) 【準備学習】テキストP69~78の「減衰自由振動・強制振動」、が説明できるようにする。 【課題】多質点系において1次の刺激関数、層せん断力、層剛性の比、層せん断力係数、層せん断			
授業形態	# 关 / 沙文 JII	力係数の比の計算 (AL③、AL④)			
達成目標	講義/演習(宿題) / プログラミング・シミュレーション(宿題)				
上,从口际	2 1 哲 占 系 σ	が非線形応答が理解でき、定式化できる。 (基礎) の線形応答が理解でき、定式化できる。 (基礎) が理解できる。 (応用) の非線形応答が理解できる。 (応用)			
評価方法・フィー ドバック	提出課題 (70%) 、授業態度 (30%) の総合成績で評価する。各課題については毎回採点後返却し、結果を フィードバックする。				
評価基準	秀 (1~4) : 90点以上、優 (1~4のうち3項目) : 89~80点、良 (1~3) : 79~70点、可 (1~2) : 69~60点、不可:59点以下				
教科書・参考書	【教科書】柴田明徳著「最新建築学シリーズ 最新耐震構造解析<第3版>」、森北出版、2014 (英語版: Akenori Shibata「DYNAMICS ANALYSIS OF EARTHQUAKE RESISTANT SRRUCTURES」、東北大学出版会) 【参考書】配布資料 志賀敏男著「構造物の振動」、共立出版 R.W.Clough and J. Penzien「Dynamics of Structures」、McGrawhill				
履修条件		ppra「Dynamics of Structures」、Prentice Hall II・III、材料力学を履修済みのこと。			
履修上の注意		*出席すること。また、動力学の基本的な知識を習得してほしい。			
準備学習と課題の 内容		記載されている「準備学習」の内容(3時間)を必ず行うこと。 記載されている「課題」の内容(3時間)を必ず行うこと。			

ディプロマポリ シーとの関連割合 (必須)

知識・理解:30%、思考・判断:20%、関心・意欲:25%、態度:15%、技能・表現:10%