講義科目名称: 固体物理化学 科目コード: 51730

英文科目名称: Physical Chemistry in Solids

開講期間	配当年	単位数	科目必選区分
1・2年前期	1 • 2	2	選択
担当教員	·	·	
脇川 祐介			
添付ファイル			

添付ファイル		
講義概要	有機固体材料の光化学の基礎と応用を学ぶ。はじめに原子、分子、多量体分子の電子状態と光との相互作を学習した後、いくつの代表的な光化学反応を学ぶ。また、与えられた有機固体材料の光化学反応の応用に連したテーマについてのプレゼンテーションを実施することで理解を深める。	作用こ関
授業計画	1 はじめに ・講義内容の概要説明	
	2 光とは何か 「光の正体と性質」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	3 原子、分子、多量体分子の電子状態① 「原子軌道」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	4 原子、分子、多量体分子の電子状態② 「原子価結合法と混成軌道」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	5 原子、分子、多量体分子の電子状態③ 「分子軌道法」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	6 分子による光吸収① 「電子遷移と分子軌道①」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	7 分子による光吸収② 「電子遷移と分子軌道②」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	8 色と分子構造 「電子の非局在化と光吸収、錯体の色」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	9 光を吸収した分子のふるまい 「光励起状態の緩和過程」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	10 光化学反応 「種々の光化学反応」についてAL①を行う。 準備学習:事前配布資料を読み、内容を理解しておくこと	
	11 プレゼンテーション① 事前に与えた有機固体材料の光化学反応の応用に関連したテーマについて調査した内容につ AL①を行う。 準備学習:発表テーマの調査と発表資料の作成	いて
	12 プレゼンテーション② 事前に与えた有機固体材料の光化学反応の応用に関連したテーマについて調査した内容につ	いて
	AL①を行う。 準備学習:発表テーマの調査と発表資料の作成 13 プレゼンテーション③	
	事前に与えた有機固体材料の光化学反応の応用に関連したテーマについて調査した内容につAL①を行う。 準備学習:発表テーマの調査と発表資料の作成	いて
	14 プレゼンテーション④ 事前に与えた有機固体材料の光化学反応の応用に関連したテーマについて調査した内容につ AL①を行う。 **#### *******************************	いて
	準備学習:発表テーマの調査と発表資料の作成 15 プレゼンテーション⑤ 事前に与えた有機固体材料の光化学反応の応用に関連したテーマについて調査した内容につAL①を行う。 準備学習:発表テーマの調査と発表資料の作成	いて
受業形態	話型の講義形式および発表形式。 アクティブラーニング:①:14回,②:回,③:回,④:回,⑤:回,⑥:回	
達成目標	(1) 有機固体材料の基礎概念について理解する。 (2) 有機固体材料の電子状態について理解する。 (3) 有機固体材料の光物性について理解する。 (4) 有機固体材料の応用について理解する。	
評価方法・フィー ドバック		

評価基準	レポート(50%)およびプレゼンテーション内容(50%)で採点する。 秀:90点以上(1~4) 優:80点以上90点未満(1~3) 良:70点以上80点未満(1~2) 可:60点以上70点未満(1) 不可:60点未満
教科書・参考書	参考書 (1) マッカーリサイモン 物理化学 分子論的アプローチ 上 (2) 光化学フロンティア 水野一彦、宮坂博、池田浩 編、化学同人 (3) Electronic Processes in Organic Semiconductors, Anna Köhler and H. Bässler, WILEY-VCH
履修条件	量子化学を履修していることが望ましい。
履修上の注意	必ず出席し、課題を提出すること。
準備学習と課題の 内容	事前配布する資料を読み、内容を理解しておくこと(一時間以上)。
ディプロマポリ シーとの関連割合 (必須)	知識・理解:30%, 思考・判断:20%, 関心・意欲:20%, 態度:10%, 技能・表現:20%