講義科目名称: 量子材料化学 科目コード: 51190

英文科目名称: Quantum Chemical Approaches to Materials Science

開講期間		配当年	単位数	科目必選区分	
1・2年前期		1 • 2	2	選択	
担当教員					
山﨑 誠志					
添付ファイル					
講義概要	量子化学の基礎的な概念およびコンピュータ支援設計を念頭においた反応設計や分子設計について講義する。 まず、量子力学にもとづき、分子の電子状態を記述する波動関数を求める方法を学び、分子の構造、電子状態、反応性がどのように解明できるかについて理解してもらう。次に、量子化学的アプローチにる物質設計、 すなわち有機反応の設計や分子設計等について触れる。				
授業計画	1 量子化学の基礎 量子力学と原子構造,シュレディンガー方程式と波動関数,エネルギー固有値,原子軌道				
	2分子系のシュレディンガー方程式1電子近似, LCAO法, 分子軌道				
	3 分子系のシュレディンガー方程式の解き方 変分法, 摂動法				
	4 簡単な分子軌道法 π電子近似,単純ヒュッケル法				
	5 鎖状π電子系(1) 単純ヒュッケル法による分子軌道の求め方,結合性軌道,反結合性軌道,非結合性軌道,重なり 積分,クーロン積分,共鳴積分				
	6 鎖状 π 電子系(2) n π 電子系, 永年行列式, 分子軌道の説の数とエネルギー, AO計数間の関係, 分子軌道の直交性				
	7 環状 π 電子系 永年行列式,分子軌道,交互炭化水素,非交互炭化水素				
	8 単純ヒュッケル法の検討と評価 重なり積分、共鳴積分、電子密度、結合次数、全エネルギー				
	9 拡張ヒュッケル法 方法の概要,電子密度,結合次数,ポピュレーション解析				
	10 近似を高めた分子軌道法 半経験的量子化学計算,非経験的量子化学計算,量子化学計算の精度				
	11 反応の設計(1) HOMO, LUMOの概念, フロンティア軌道, フロンティア電子密度				
	12	エチレンとブタジエンのDiels-Alder反応、HOMO-LUMOの重なり			
	13 反応の設計(3) Diels-Alder反応の設計,電子吸引性と電子供与性置換基の効果				
	14	原子軌道		道の混成,高周期元素の結合特性	
	15	多重結合		体分子,置換基効果	
授業形態	講義形式で行う。 演習も行う予定。 アクティブラーニング:①:10回,②:5回,③:3回,④:3回,⑤:2回,⑥:2回				
達成目標	1. シュレディンガー方程式を理解でき、簡単なポテンシャル問題を解くことができる。 2. 分子系のシュレディンガー方程式をたてることができ、解くための近似的方法を使うことができる。 3. ヒュッケル分子軌道法を用いて、分子軌道を求めることができ、化学反応性がHOMO-LUMO相互作用とどのように関係しているか、考察できる。 4. ヒュッケル分子軌道法を自分で使うことができ、量子化学的考察により、さらに高度な反応設計や分子設計ができる				
評価方法・フィー ドバック	授業期間中の課題(50%) および期末における課題(50%)で評価する				
評価基準	上記の課題の合計点が,100点満点で60点以上あれば合格とする。 評価は、秀(1-4):100点~90点、優(1-3): 89点~80点、良(1-2): 79点~70点、可(1): 69点~60点,不可:59点以下とする。				
教科書・参考書	参考書:西本吉助、今村詮、山口兆、山辺信一、北浦和夫 『分子設計のための量子化学』 (講談社)				
履修条件	なし				
履修上の注意	なし				
準備学習と課題の 内容	毎回の授業に対して、2時間以上、自分で復習をして理解し、次の授業に臨むことが必須である。				

ディプロマポリ シーとの関連割合 (必須)

知識・理解: 30%, 思考・判断: 30%, 関心・意欲: 10%, 態度: 10%, 技能・表現: 20%